Cramér-Rao bound for time-continuous measurements in linear Gaussian quantum systems
نویسندگان
چکیده
منابع مشابه
Cramér-Rao bound for time-continuous measurements in linear Gaussian quantum systems
We describe a compact and reliable method to calculate the Fisher information for the estimation of a dynamical parameter in a continuously measured linear Gaussian quantum system. Unlike previous methods in the literature, which involve the numerical integration of a stochastic master equation for the corresponding density operator in a Hilbert space of infinite dimension, the formulas here de...
متن کاملThe Marginal Bayesian Cramér-Rao Bound for Jump Markov Systems
In this letter, numerical algorithms for computing the marginal version of the Bayesian Cramér-Rao bound (M-BCRB) for jump Markov nonlinear systems and jump Markov linear Gaussian systems are proposed. Benchmark examples for both systems illustrate that the M-BCRB is tighter than three other recently proposed BCRBs. Index Terms Jump Markov nonlinear systems, Bayesian Cramér-Rao bound, particle ...
متن کاملCramér-Rao bound for range estimation
In this paper, we derive the Cramér-Rao bound (CRB) for range estimation, which does not only exploit the range information in the time delay, but also in the amplitude of the received signal. This new bound is lower than the conventional CRB that only makes use of the range information in the time delay. We investigate the new bound in an additive white Gaussian noise (AWGN) channel with atten...
متن کاملCoarrays, MUSIC, and the Cramér-Rao Bound
Sparse linear arrays, such as co-prime arrays and nested arrays, have the attractive capability of providing enhanced degrees of freedom. By exploiting the coarray structure, an augmented sample covariance matrix can be constructed and MUSIC (MUtiple SIgnal Classification) can be applied to identify more sources than the number of sensors. While such a MUSIC algorithm works quite well, its perf...
متن کاملRecursive Hybrid Cramér-Rao Bound for Discrete-Time Markovian Dynamic Systems
In statistical signal processing, hybrid parameter estimation refers to the case where the parameters vector to estimate contains both non-random and random parameters. As a contribution to the hybrid estimation framework, we introduce a recursive hybrid Cramér Rao lower bounds for discrete-time Markovian dynamic systems depending on unknown deterministic parameters. Additionnally, the regulari...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review A
سال: 2017
ISSN: 2469-9926,2469-9934
DOI: 10.1103/physreva.95.012116